
ar
X

iv
:1

10
8.

04
40

v3
  [

m
at

h.
PR

] 
 2

3 
Ju

l 2
01

3

The Annals of Applied Probability

2013, Vol. 23, No. 4, 1377–1408
DOI: 10.1214/12-AAP873
c© Institute of Mathematical Statistics, 2013

UPPER BOUND ON THE RATE OF ADAPTATION IN

AN ASEXUAL POPULATION

By Michael Kelly1

University of California, San Diego

We consider a model of asexually reproducing individuals. The
birth and death rates of the individuals are affected by a fitness pa-
rameter. The rate of mutations that cause the fitnesses to change is
proportional to the population size, N . The mutations may be ei-
ther beneficial or deleterious. In a paper by Yu, Etheridge and Cuth-
bertson [Ann. Appl. Probab. 20 (2010) 978–1004] it was shown that
the average rate at which the mean fitness increases in this model
is bounded below by log1−δ N for any δ > 0. We achieve an upper
bound on the average rate at which the mean fitness increases of
O(logN/(log logN)2).

1. Introduction. In a finite, asexually reproducing population with mu-
tations, it is well known that competition among multiple individuals that
get beneficial mutations can slow the rate of adaptation. This phenomenon
is known as the Hill–Robertson effect, named for the authors of [7]. One
may wish to consider the effect on the rate of adaptation of a population
when there are many beneficial mutations present simultaneously. It is easily
observed that when such a population is finite and all mutations are either
neutral or deleterious, the fitness of the population will decrease over time.
This scenario is known as Muller’s ratchet. The first rigorous results re-
garding Muller’s ratchet were due to Haigh [6]. In an asexually reproducing
population, beneficial mutations are necessary to overcome Muller’s ratchet.
Yu, Etheridge and Cuthbertson [11] proposed a model that gives insight into
both the Hill–Robertson effect and Muller’s ratchet in large populations with
fast mutation rates.

The model introduced in [11] is a Moran model with mutations and se-
lection. There are N individuals in this model, each with an integer valued
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2 M. KELLY

fitness. The dynamics of the model are determined by three parameters, µ,
q and γ, which are independent of N . The parameters must satisfy µ > 0,
0 < q ≤ 1 and γ > 0. Let Xi

t be the fitness of individual i at time t. Then
X = (X1,X2, . . . ,XN ) is a stochastic process with state space Z

N . The sys-
tem has the following dynamics:

(1) Mutation: Each individual acquires mutations at rate µ. When indi-
vidual i gets a mutation, it is beneficial with probability q and Xi increases
by 1. With probability 1− q the mutation is deleterious and Xi decreases
by 1.

(2) Selection: For each pair of individuals (i, j), at rate γ
N (Xi−Xj)+, we

set Xj equal to Xi.
(3) Resampling: For each pair of individuals (i, j), at rate 1/N , we set

Xj equal to Xi.

Note that the upper bound we establish for the rate of adaptation still
holds in the absence of deleterious mutations, which corresponds to the case
q = 1. Under the selection mechanism the event that Xj is set to equal Xi

represents the more fit individual i giving birth and the less fit individual j
dying. Likewise, the resampling event that causes Xj to equal Xi represents
individual i giving birth and individual j dying.

We give an equivalent description of the model involving Poisson processes
that may make the coupling arguments more clear. The Poisson processes
that determine the dynamics of X are as follows:

• There are N Poisson processes Pi↑, 1≤ i≤N , on [0,∞) of rate qµ. If Pi↑

gets a mark at t then the ith coordinate of X increases by 1 at time t.
• There are N Poisson processes Pi↓, 1≤ i≤N , on [0,∞) of rate (1− q)µ.

If Pi↓ gets a mark at t then the ith coordinate of X decreases by 1 at
time t.

• For each ordered pair of coordinates (i, j) with i 6= j there is a Poisson
process on [0,∞), Pi,j , of rate 1/N . If Pi,j gets a mark at t then the jth
coordinate changes its value to agree with the ith coordinate at time t.

• For each ordered pair of coordinates (i, j) with i 6= j there is a Poisson
processes on [0,∞) × [0,∞), Pi,j↑, which has intensity γ

N λ where λ is

Lebesgue measure on R
2. If Pi,j↑ gets a mark in {t}× [0,Xi

t− −Xj
t−] then

the jth coordinate changes its value to agree with the ith coordinate at
time t.

A heuristic argument in [11] shows that as N tends to infinity the mean
rate of increase of the average fitness of the individuals in X is O(logN/
(log logN)2). Due to a typo on page 989 they state that the rate is O(logN/
log logN). By equation (10) in [11],

K log(γK) = 2 logN.
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This implies that

K ≈ 2 logN

log logN
.

Plugging 2 logN/ log logN into each side of the consistency condition that
they derive gives a rate of adaption of O(logN/(log logN)2).

The heuristic argument is difficult to extend to a rigorous argument. Let

X =
1

N

N
∑

i=1

Xi

be the continuous-time process which represents the average fitness of the
individuals in X . The rigorous results established in [11] are as follows:

• The centered process XC , in which individual i has fitness XC,i =Xi−X ,
is ergodic and has a stationary distribution π.

• If

c2 =
1

N

N
∑

i=1

(XC,i)2

is the variance of the centered process under the stationary distribution,
then

Eπ[X t] = (µ(2q − 1) + γEπ[c2])t,

where Eπ means that the initial configuration of X is chosen according
to the stationary distribution π.

• For any δ > 0 there exists N0 large enough so that for all N ≥N0 we have
Eπ[X1]≥ log1−δ N .

It is difficult to say anything rigorous about Eπ[c2] so other methods are
needed to compute E[X t]. The third result of [11] shows that if there is a
positive ratio of beneficial mutations then a large enough population will
increase in fitness over time. A paper by Etheridge and Yu [5] provides
further results pertaining to this model.

Other similar models can be found in the biological literature. In these
models the density of the particles is assumed to act as a traveling wave
in time. The bulk of the wave behaves approximately deterministically and
the random noise comes from the most fit classes of individuals. One tries
to determine how quickly the fittest classes advance and pull the wave for-
ward. This traveling wave approach is used in [10] and [11] to approximate
the rate of evolution as O(logN/(log logN)2). For other work in this di-
rection see Rouzine, Brunet and Wilke [9], Brunet, Rouzine and Wilke [1],
Desai and Fisher [2] and Park, Simon and Krug [8]. Using nonrigorous ar-
guments, these authors get estimates of O(logN), O(logN/ log logN) and
O(logN/(log logN)2), where the differences depend on the details of the



4 M. KELLY

models that they analyze. For more motivation and details concerning this
model, please see the Introduction in [11].

Motivated by applications to cancer development, Durrett and Mayberry
have established rigorous results for a similar model in [4]. They consider two
models in which all mutations are beneficial and the mutation rate tends to 0
as the population size tends to infinity. In one of their models the population
size is fixed and in the other it is exponentially increasing. For the model with
the fixed population size they show that the rate at which the average fitness
is expected to increase is O(logN). By considering the expected number of
individuals that have fitness k at time t, they establish rigorously that the
density of the particles in their model will act as a traveling wave in time.

Our result is the following theorem.

Theorem 1. Let Xi
0 = 0 for 1≤ i≤N . There exists a positive constant

C which may depend on µ, q and γ such that for N large enough

E[X ]

t
≤ C logN

(log logN)2

for all t≥ log logN .

A difference between the result in [11] and our result is that in [11] the
initial state of the process is randomly chosen according to the stationary
distribution π, while we make the assumption that all of the individuals
initially have fitness 0.

The statements of the propositions needed to prove Theorem 1 and the
proof of Theorem 1 are included in Section 2. At the end of the paper there
is a table which includes the notation that is used throughout the paper and
the Appendix that includes some general results on branching processes.

2. Proof of Theorem 1. Before stating the propositions we use to prove
the theorem we need to establish some notation. Let X+

t = max{Xi
t : 1 ≤

i ≤ N} be the maximum fitness of any individual at time t and X−
t =

min{Xi
t : 1≤ i≤N} be the minimum fitness of any individual at time t. De-

fine the width of the process to be Wt =X+
t −X−

t and define Dt =X+
t −X+

0
be the distance the front of the process has traveled by time t. Theorem 1
states that all individuals initially have fitness 0. Therefore, a bound on
Dt immediately yields a bound on X t. The bounds we establish on Dt will
depend on the width, Wt.

Let w=w(N) be any positive, increasing function that satisfies

lim
N→∞

w(N) =∞ and lim
N→∞

w(N)

log logN
= 0.

Let W = ⌊w logN/ log logN⌋ and T =w−1/2 log logN . Heuristically, we con-
jecture that Wt is typically of size O(logN/ log logN) so W is larger than
the typical width of X . With probability tending to 1, selection should cause
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any width larger than W to shrink within T time units. Because the width
is a stochastic process, we are motivated to make the following definitions:

t1 = 0,

sn = inf{t≥ tn :Wt ≥ 2W} for n≥ 1,

tn = inf{t≥ sn−1 :Wt <W} for n≥ 2,

Yi = sup
si≤t≤ti+1

Dt −Dsi for i≥ 1,

Nt =max{i : si ≤ t} for t≥ 0.

Note that sn and tn exist for all n≥ 1 with probability 1.
We define branching processes Zk,↑ for k ≥ 0 which have the following

dynamics:

• Initially there are N particles of type k in Zk,↑
0 .

• Each particle changes from type i to i+1 at rate µ.
• A particle of type i branches at rate γi+1 and, upon branching, the new

particle is also type i.

LetMk,↑
t be the maximum type of any particle in Zk,↑

t and letMk,↑
t =Mk,↑

t − k,

so that Mk,↑
0 = 0. Note that we refer to individuals in branching processes

as particles to distinguish them from the individuals in X . This will make
the coupling arguments in the next section more clear.

We define a stochastic processX ′ that will be coupled withX as described
in the proof of Proposition 2 for reasons that will become clear shortly. Let
{Zn}∞n=0 be an i.i.d. sequence of continuous-time stochastic processes which
each have the same distribution as ZW ,↑. Let Mn

t be the maximum type of
any particle in Zn

t and let Mn
t =Mn

t −W so that Mn
0 = 0 for all n. Define

X ′
t =

{

X+
0 +M0

t , if t ∈ [0,T ],

X ′
iT +Mi

t−iT , if t ∈ (iT , (i+ 1)T ] for any integer i≥ 1,

and D′
t =X ′

t−X+
0 . The idea is that D′

t is the maximum type of any particle
in a branching process X ′ that has the same distribution as ZW ,↑ except
that at each time iT we restart the branching process so that there are
once again N particles of type W . For each integer i≥ 0 at time iT , the N
particles initially have type D′

t which is the maximum type achieved by any
particle in X ′

t up to time t.
Now we are able to state the four propositions used to prove Theorem 1.

Proposition 2 is a result of the coupling of X and X ′.

Proposition 2. Let Xi
0 = 0 for 1≤ i≤N . Then

Dt ≤D′
t +

Nt
∑

i=1

Yi

for all times t≥ 0.



6 M. KELLY

Proposition 3. Let Xi
0 = 0 for 1≤ i≤N . For N large enough we have

sup
t∈[T ,∞)

E[D′
t]

t
≤ 6W

T .

With the initial condition Xi
0 = 0 for 1 ≤ i ≤ N , we let F = {Ft}t≥0 be

the natural filtration associated with X .

Proposition 4. Let Xi
0 = 0 for 1≤ i≤N . For N large enough we have

E[Yi|Fsi ]≤ 5W for all i≥ 1.

Proposition 5. Let Xi
0 = 0 for 1≤ i≤N . For N large enough,

sup
s∈[0,∞)

1

s
E[Ns]≤

1

T .

Proof of Theorem 1. Fix t≥ log logN . It follows by definition of T
that t > T so that the hypotheses of the preceding four propositions are
satisfied. There exists N0 which does not depend on t such that for any
N ≥N0 we have

E

[

Dt

t

]

≤E

[

D′
t +
∑Nt

i=1 Yi

t

]

by Proposition 2

=E

[

D′
t

t

]

+E

[∑Nt
i=1 Yi

t

]

≤ 6W
T +

1

t
E

[

Nt
∑

i=1

Yi

]

by Proposition 3

=
6W
T +

1

t

∞
∑

i=1

E[Yi1{Nt≥i}]

=
6W
T +

1

t

∞
∑

i=1

E[E[Yi1{Nt≥i}|Fsi ]]

=
6W
T +

1

t

∞
∑

i=1

E[1{Nt≥i}E[Yi|Fsi ]]

≤ 6W
T +

5W
t

∞
∑

i=1

E[1{Nt≥i}] by Proposition 4

=
6W
T +

5W
t

E[Nt]
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≤ 6W
T +

5W
T by Proposition 5

=
11w1/2 logN

(log logN)2
.

Since w may go to infinity arbitrarily slowly with N there must exist a
constant C such that

E[Dt]

t
≤ C logN

(log logN)2

for all t≥ log logN . This immediately gives a bound on E[X t]/t. �

3. Bounding the rate when the width is small. Through the use of
branching processes we establish a bound on Dt that depends on the width.
We will make use of the strong Markov property of X at the times sn and
tn for n ≥ 1. For this reason, many of the statements we prove below will
include conditions for which W0 > 0 even though according to the conditions
of Theorem 1 we have W0 = 0. In this section we establish a small upper
bound for Dt on the time intervals [tn, sn).

The following proofs will involve coupling X with various branching pro-
cesses. While the individuals in X each have an integer value that we refer
to as the fitness of the individual, the particles in a branching process will
each be given an integer value that we refer to as the type of the particle.
Let ZC = {ZC

t }t≥0 be a multi-type Yule process in which there are initially
N particles of type 0. Particles increase from type i to type i+ 1 at rate µ
and branch at rate C. When a particle of type i branches, the new particle
is also type i. Let MC

t be the maximum type of any particle at time t.
The next proposition will give a lower bound on the fitness of any indi-

vidual up to time t given that we know the least fitness at time 0 is X−
0 . We

do this by establishing an upper bound on the amount that any individual
will decrease in fitness. Let

St = sup
0≤s≤t

(X−
0 −X−

s ).

Proposition 6. For any population size N , initial configuration X0,
time t≥ 0 and natural number l,

P (St ≥ l)≤ N(tµ)let

l!
.

Proof. By Lemma 16 in the Appendix we have

P (M1
t ≥ l)≤ N(tµ)let

l!
for any population size N , time t≥ 0 and natural number l. Note that from
our notation above Z1 is a Yule process with branching rate 1. To complete
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Fig. 1. Picture of the coupling of X with Z1 when N = 3.

the proof we establish a coupling between X and Z1 such that for any

population size N and time t ≥ 0 we have M1
t ≥ St. See Figure 1 for an

illustration of the coupling. At all times every individual in X will be paired
with one particle in Z1. The coupling is as follows:

• We initially have a one-to-one pairing of each individual i in X0 with each
particle i in Z1

0 .
• The particle in Z1 that is paired with individual i will increase in type by

1 only when individual i gets a mutation.
• For each individual i in X and each j 6= i, individual j is replaced by

individual i at rate 1/N due to resampling events. If individual i replaces
individual j due to resampling, then the particle labeled i in Z1 branches.
If particle i has a higher type than particle j, then the new particle is
paired with individual j. The particle that was paired with individual j
before the branching event is no longer paired with any individual in X .
If particle i has a lower type than particle j then the particle that was
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paired with individual j remains paired with individual j and the new
particle is not paired with any individual in X .

• The particle paired with individual i in Z1 branches at rate 1/N and these
branching events are independent of any of the events in X . When the
particle paired with individual i branches due to these events, the new
particle is not paired with any individual in X .

• Any particles in Z1 that are not paired with an individual in X branch
and acquire mutations independently of X . The selection events in X are
independent of any events in Z1.

Let Ri be the type of the particle in Z1 that is paired with individual i
and let

Si
s = sup

0≤r≤s
(X−

0 −Xi
r).

To show M1
t ≥ St it is enough to show Ri

t ≥ Si
t for all i. Initially Si

0 ≤Ri
0 = 0

for all i. Note that both s 7→ Si
s and s 7→ Ri

s are increasing functions and
that increases in these functions correspond to decreases in Xi.

When individual i gets a mutation, Ri increases by 1. However, if in-
dividual i gets a mutation at time s, then Si will only increase by 1 if
Si
s− =X−

0 −Xi
s− and the mutation is deleterious. Therefore, if individual i

gets a mutation at time s and Si
s− ≤Ri

s−, then

Si
s ≤ Si

s− +1≤Ri
s− +1 =Ri

s.

Suppose individual j is replaced by individual i due to a resampling event
at time s and that both Sj

s− ≤Rj
s− and Si

s− ≤Ri
s− hold. With probability 1

we have Si
s = Si

s− and Ri
s =Ri

s−. If X
−
0 −Xi

s ≤ Sj
s− then Sj

s− = Sj
s . From this

it follows that Sj
s ≤Rj

s. If X
−
0 −Xi

s >Sj
s− then Sj

s =X−
0 −Xi

s ≤ Si
s ≤Ri

s. If

Ri
s ≥Rj

s−, then by the definition of the coupling, Rj
s =Ri

s. If R
i
s <Rj

s−, then

by definition of the coupling, Rj
s =Rj

s−. Therefore, R
j
s ≥Ri

s which gives us

Sj
s ≤Rj

s.
Selection events will never increase Si and since Si and Ri are increasing

in time, a selection event at time s will preserve the inequality Si
s ≤Ri

s. This
shows that any event that occurs at time s which may change the fitness of
an individual i in X will preserve the inequality Si

s ≤ Ri
s. Since the result

holds for each individual i, we have St ≤M1
t . �

We now wish to bound the distance the front of the wave moves as a
function of the initial width.

Proposition 7. For any initial configuration X0, fixed time t≥ 0 and
any integer l≥ 0, we have

P
(

sup
0≤s≤t

Ds > l
)

≤ 2N(tµ)le(γ(W0+2l)+µ+1)t

(l− 1)!
.
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Fig. 2. Picture of the coupling of X with Zk,↑ when N = 3.

Proof. Recall that W0 is the width of X at time 0. We first establish
a coupling between X and ZW0+k,↑ for each integer k ≥ 0. See Figure 2
for an illustration of the coupling. Let T k = inf{t :St > k} for k ≥ 1. Every
individual in X will be paired with one particle in ZW0+k,↑ until time T k.
We couple ZW0+k,↑ with X for all times t ∈ [0, T k) as follows:

• We initially have a one-to-one pairing of each individual i in X0 with

each particle i in ZW0+k,↑
0 . When a particle in ZW0+k,↑

t is coupled with
individual i, we refer to the particle as particle i.

• Particle i increases in type by 1 only when individual i gets a mutation.
• For each individual i in X and each j 6= i, individual j is replaced by

individual i at rate 1/N due to resampling events. If individual i replaces
individual j due to resampling, then particle i branches. If particle i has a
higher type than particle j, then the new particle is paired with individual
j. The particle that was paired with individual j before the branching
event is no longer paired with any individual in X . If particle i has a lower
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type than particle j, then the particle that was paired with individual j
remains paired with individual j and the new particle is not paired with
any individual in X .

• Additionally, particle i branches at rate 1/N and these branching events
are independent of any of the events in X . When particle i branches due
to these events the new particle is not paired with any individual in X .

• In X there is a time dependent rate γU i
s at which individuals j 6= i are

replaced by individual i due to selection events, namely,

U i
s =

1

N

N
∑

j=1

(Xi
s −Xj

s )
+.

If individual j is replaced by individual i in X due to a selection event,
then particle i branches. If particle i has a higher type than particle j,
then the new particle is paired with individual j. The particle that was
paired with individual j before the branching event is no longer paired
with any individual in X . If particle i has a lower type than particle j,
then the particle that was paired with individual j remains paired with
individual j. The new particle is not paired with any individual in X .

• Additionally, particle i branches at a time dependent rate γ(Ri,k
t − U i

t )

where Ri,k
t is the type of particle i. These branching events are indepen-

dent of any of the events in X . When such a branching event occurs, the
new particle is not paired with any individual in X .

• Any particles in ZW0+k,↑ that are not paired with an individual in X
branch and change type independently of X .

Fix k ≥ 1. For the above coupling between X and ZW0+k,↑ to be well defined

until time T k, we need Ri,k
t −U i

t ≥ 0 for all i ∈ {1, . . . ,N} and for all times

t ∈ [0, T k). Let T k,i = inf{t :Ri,k
t − U i

t < 0}. The coupling between X and
ZW0+k,↑ is well defined until time T k =min{T k,i : 1≤ i≤N}. We will show
that T k ≤ T k.

Let

Si
t = sup

0≤s≤t
(Xi

s −X+
0 ) and Ri,k

t =Ri,k
0 −W0 − k.

Initially Si
0 ≤ Ri,k

0 = 0 for all i. Note that both t 7→ Si
t and t 7→ Ri,k

t are

increasing functions, from which it follows that t 7→Ri,k
t is also an increasing

function.
When individual i gets a mutation, Ri,k increases by 1. However, if in-

dividual i gets a mutation at time s then Si will only increase by 1 if
Si
s− = Xi

s− − X+
0 and the mutation is beneficial. Therefore, if individual

i gets a mutation at time s and Si
s− ≤Ri,k

s−, then

Si
s ≤ Si

s− +1≤Ri,k
s−

+1=Ri,k
s .
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Suppose individual j is replaced by individual i due to a resampling or

selection event at time s and that both Sj
s− ≤Rj,k

s− and Si
s = Si

s− ≤Ri,k
s− =

Ri,k
s hold. If Xi

s −X+
0 ≤ Sj

s−, then Sj
s− = Sj

s. It follows that Sj
s ≤ Rj,k

s . If

Xi
s −X+

0 > Sj
s− then Sj

s =X−
0 −Xi

s ≤ Si
s ≤Ri,k

s . If Ri,k
s ≥Rj,k

s−, then by the

definition of the coupling, Rj,k
s = Ri,k

s . If Ri,k
s < Rj,k

s−, then by definition of

the coupling, Rj,k
s =Rj,k

s−. Therefore, R
j,k
s ≥Ri,k

s which gives us Sj
s ≤Rj,k

s .

For any time s < T k we have Ri,k
s ≥ Si

s + W0 + k ≥ Xi
s − X+

0 + W0 +
k =Xi

s −X−
0 + k. If there were N individuals with fitness X−

0 − k at time
s ∈ [0, T k,i), then the rate at which individual i replaces these N individuals
due to selection is γ(Xi

s −X−
0 + k). However, for any time s < T k, there are

fewer than N individuals being replaced by individual i due to selection and
they will all have fitnesses at least as large as X−

0 −k. This gives us a bound
on the rate at which resampling events occur on individual i before time

T k, namely, U i
s ≤ Xi

s −X−
0 + k ≤ Ri,k

s for all s ∈ [0, T k). This shows that
T k ≤ T k,i for all i. Hence, T k ≤ T k and the coupling is well defined until
time T k.

We have shown that any event that occurs at time s ∈ [0, T k) which may
change the fitness of an individual i in X will preserve the inequality Si

s ≤
Ri,k

s . Since the result holds for each individual i, for any s ∈ [0, T k) we have

sup
0≤r≤s

Dr = sup
1≤i≤N

Si
s ≤ sup

1≤i≤N
Ri,k

s ≤MW0+k,↑
s .

Note that if sup0≤s≤t(X
−
0 − X−

s ) ≤ k then t < T k. On the event

{sup0≤s≤t(X
−
0 −X−

s )≤ k} we have MW0+k,↑
t ≥ sup0≤s≤tDs. This allows us

to do the following computation:

P
(

sup
0≤s≤t

Ds > l
)

=
∞
∑

i=0

P
({

sup
0≤s≤t

Ds > l
}

∩
{

sup
0≤s≤t

(X−
0 −X−

s ) = i
})

≤
∞
∑

i=0

P
(

{MW0+i,↑
t > l} ∩

{

sup
0≤s≤t

(X−
0 −X−

s ) = i
})

≤
∞
∑

i=0

P
(

{MW0+i,↑
t > l} ∩

{

sup
0≤s≤t

(X−
0 −X−

s )≥ i
})

≤
∞
∑

i=0

P (MW0+i,↑
t > l)∧ P

(

sup
0≤s≤t

(X−
0 −X−

s )≥ i
)

≤
∞
∑

i=0

P (MW0+i,↑
t > l)∧

(

N(tµ)iet

i!

)

by Proposition 6

≤
∞
∑

i=0

(

N(tµ)le(γ(W0+i+l)+1)t

l!

)

∧
(

N(tµ)iet

i!

)
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by Lemma 17 in the Appendix

≤ N(tµ)le(γ(W0+l)+1)t

l!

l−1
∑

i=0

eiγt +Net
∞
∑

i=l

(tµ)i

i!

≤ N(tµ)le(γ(W0+l)+1)t

l!
· lelγt +Net

∞
∑

i=l

(tµ)i

i!
(1)

≤ N(tµ)le(γ(W0+2l)+1)t

(l− 1)!
+

N(tµ)le(µ+1)t

l!

by Lemma 15 in the Appendix

≤ 2N(tµ)le(γ(W0+2l)+µ+1)t

(l− 1)!
.

�

We now extend the bound we got on the least fit individuals in Proposi-
tion 6 to a slightly stronger result.

Definition 8. Let x ∈ Z and let Sx
t ⊂ {1,2, . . . ,N} correspond to a

collection of individuals at time t which is determined by the following dy-
namics:

• Initially, Sx
0 consists of all individuals whose fitness lies in the interval

(x,∞).
• If a resampling or selection event occurs at time t and an individual not

in Sx
t− is replaced by a individual in Sx

t−, then it is added to Sx
t .

• If a beneficial mutation occurs at time t on an individual not in Sx
t− that

causes its fitness to increase from x to x+ 1, it is added to Sx
t .

• If a resampling event occurs at time t to an individual in Sx
t− and it is

replaced by a individual not in Sx
t−, then it is removed from Sx

t .

Mutation and selection events do not cause individuals to be lost from Sx.
We now prove the following corollary to Proposition 7.

Corollary 9. Let Ax,l
t be the event that an individual in Sx

s has fitness

in (−∞, x− l] for some time s ∈ [0, t]. For any initial configuration X0, time

t≥ 0 and any integer l,

P (Ax,l
t )≤ 2N(tµ)le(γ(W0+2l)+µ+1)t

(l− 1)!
.

Note that we cannot use the bound found in Proposition 6 because in-
dividuals not in Sx

t may move to Sx
t due to selection events. In the proof
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of Proposition 6 the number of individuals with the least fitness cannot in-
crease due to selection events. However, the number of individuals with the
least fitness in Sx

t may increase due to selection events involving individuals
not in Sx

t .

Proof of Corollary 9. For k ≥ 1 let X be coupled with ZW0+k,↑ as

in the proof of Proposition 7. Let T k, Ri,k
t and Ri,k

t be defined as they were
in the proof of Proposition 7. Define T i

s = {r ∈ [0, s] : i ∈ Sx
r } and let

Si
s =







sup
r∈T i

s

(x−Xi
r), if T i

s 6=∅,

−∞, if T i
s =∅.

The goal is to show that for all s ∈ [0, T k) we have

sup
1≤i≤N

Si
s ≤ sup

1≤i≤N
Ri,k

s ≤MW0+k,↑
s .

Note that we can only consider the coupling of X with ZW0+k,↑ until time
T k because after this time the coupling is not well defined.

Initially all of the individuals in Sx
0 have fitness in (x,∞). Therefore, if

i ∈ Sx
0 then Si

0 ≤ 0 =Ri,k
0 . If i /∈ Sx

0 then Si
0 =−∞<Ri,k

0 .
Suppose individual i gets a mutation at time s and that for any time

s′ ∈ [0, s−) we have Si
s′ ≤Ri,k

s′ . Then Ri,k increases by 1. If i ∈ Sx
s− then Si

s
will only increase by 1 if Si

s− = x−Xi
s and the mutation is deleterious. If

i /∈ Sx
s− and the mutation does not cause the fitness of individual i to change

from x to x+ 1, then Si
s = Si

s−. If i /∈ Sx
s− and the mutation does cause the

fitness of individual i to change from x to x+ 1, then Si
s = Si

s− ∨ 0. In any

of these three cases, Si
s ≤Ri,k

s .
Suppose individual j is replaced by individual i due to a resampling or

selection event at time s and that Sj
s− ≤Rj,k

s− and Si
s− ≤Ri,k

s−. If i /∈ Sx
s− then

Sj
s− = Sj

s ≤Rj,k
s−. Suppose i ∈ Sx

s−. If x−Xi
s ≤ Sj

s− then Sj
s− = Sj

s . From this

it follows that Sj
s ≤ Rj

s. If x −Xi
s > Sj

s−, then Sj
s = x −Xi

s ≤ Si
s ≤ Ri

s. If

Ri
s ≥ Rj

s−, then by the definition of the coupling, Rj
s = Ri

s. If Ri
s < Rj

s−,

then by definition of the coupling, Rj
s = Rj

s−. Therefore, Rj
s ≥ Ri

s which

gives us Sj
s ≤Rj

s.
Note that if sup0≤s≤t(X

−
0 −X−

s )≤ k then t < T k. Therefore, on the event

{sup0≤s≤t(X
−
0 −X−

s )≤ k} we have MW0+k,↑
t ≥ sup1≤i≤N Si

s. This allows us
to do the following computation:

P
(

sup
0≤s≤t

sup
1≤i≤N

Si
s > l

)

=
∞
∑

i=0

P
({

sup
0≤s≤t

sup
1≤i≤N

Si
s > l

}

∩
{

sup
0≤s≤t

(X−
0 −X−

s ) = i
})
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≤
∞
∑

i=0

P
(

{MW0+i,↑
t > l} ∩

{

sup
0≤s≤t

(X−
0 −X−

s ) = i
})

.

This is the same bound as equation (1) in the proof of Proposition 7. There-
fore, we have established the same bound. �

Proof of Proposition 3. By definition D′
T has the same distribution

as MW ,↑
T so by Lemma 17 in the Appendix we have

P (D′
T > l)≤ N(T µ)le(γ(W+l)+1)T

l!
.

Then

E[D′
T ]

2W =
1

2W

∞
∑

l=0

P (D′
T > l)

(2)

≤ 1

2W

[

2W +

∞
∑

l=2W

N(T µ)le(γ(W+l)+1)T

l!

]

.

By Lemma 15 in the Appendix we have

∞
∑

l=2W

N(T µ)le(γ(W+l)+1)T

l!
≤ Ne(γW+1)T (T µeγT )2WeT µeγT

(2W)!
.(3)

Note that for any k ≥ 2 both D′
kT − D′

(k−1)T and D′
T have the same

distribution, namely, that of MW
T . Choose t ∈ [kT , (k+1)T ) for some k ≥ 1.

Because D′
t is increasing in t we have

D′
t

t
≤ 1

kT (D′
(k+1)T −D′

kT +D′
kT − · · ·+D′

2T −D′
T +D′

T ).

Therefore,

E[D′
t]

t
≤ (k+1)E[D′

T ]

kT ≤ 2E[D′
T ]

T .

Let t > T . Dividing both sides by 2W/T and using the bounds found in
equations (2) and (3) gives us

T E[D′
t]

2tW ≤ 2E[D′
T ]

2W ≤ 2 +
Ne(γW+1)T (T µeγT )2WeT µeγT

2W(2W)!
.

By Stirling’s formula we have

Ne(γW+1)T (T µeγT )2WeT µeγT

2W(2W)!
∼ Ne(γW+1)T (T µeγT )2WeT µeγT +2W

(2W)2W+1
√
4πW

= ex,
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where

x= logN + T (γW +1+ µeγT ) + 2W(log(T µeγT ) + 1)

− (2W +1) log(2W)− log(4πW)/2.

As N →∞ we have x∼−(2W +1) log(2W)∼−2w logN . Therefore,

T E[D′
t]

2tW ≤ 3

for N large enough. �

Proof of Proposition 2. We now couple X with X ′ by coupling X
with the sequence of processes {Zm}∞m=0. Let

Im = (mT , (m+1)T ]∩
∞
⋃

n=1

[tn, sn) and Jm = (0,T ]∩
∞
⋃

n=1

[tn−mT , sn−mT ).

For any m≥ 0 we couple X and Zm as follows:

• The particles in Zm
0 are labeled 1,2, . . . ,N .

• For any time in ICm the process X behaves independently of Zm. For
any time in JC

m the process Zm behaves independently of the process X .
During the time JC

m, if a particle labeled i in Zm branches, the particle
remains labeled i and the new particle is unlabeled.

• The particle in Zm that is paired with individual i will increase in type
by 1 at time t ∈ Jm only when individual i gets a mutation at time
t+mT ∈ Im.

• For each individual i in X and each j 6= i, individual j is replaced by
individual i at rate 1/N due to resampling events. If individual i replaces
individual j due to resampling at time t ∈ Im, then the particle labeled
i in Zm branches at time t−mT ∈ Jm. If particle i has a higher type
than particle j, then the new particle is paired with individual j. The
particle that was paired with individual j before the branching event
is no longer paired with any individual in X . If particle i has a lower
type than particle j, then the particle that was paired with individual j
remains paired with individual j and the new particle is not paired with
any individual in X .

• The particle paired with individual i in Zm branches at rate 1/N for all
times t ∈ Jm and these branching events are independent of any of the
events in X . When the particle paired with individual i branches due to
these events the new particle is not paired with any individual in X .

• In X there is a time dependent rate γU i
s at which individuals j 6= i are

replaced by individual i due to selection events. If individual j is replaced
by individual i in X due to a selection event at time t ∈ Im, then the
particle labeled i in Zm splits at time t−mT ∈ Jm. If particle i has a
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higher type than particle j, then the new particle is paired with individ-
ual j. The particle that was paired with individual j before the branching
event is no longer paired with any individual in X . If particle i has a lower
type than particle j, then the particle that was paired with individual j
remains paired with individual j. The new particle is not paired with any
individual in X .

• A particle labeled i in Zm splits at a time-dependent rate γ(Ri,k
t − U i

t )

for all times t ∈ Jm where Ri,k
t is the type of particle i. These branching

events are independent of any of the events in X . When such a branching
event occurs, the new particle is not paired with any individual in X .

• Any particles in Zm that are not paired with an individual in X branch
and acquire mutations independently of X .

Observe the following bound for Dt:

Dt ≤
Nt−1
∑

i=1

(Dti+1 −Dsi) +

Nt
∑

i=1

(Dsi −Dti) + sup
sNt≤s≤tNt+1

(Ds −DsNt
)

+ sup
tNt+1≤s≤t

(Ds −DtNt+1
),

where we consider the supremum over the empty set to be 0. By definition
we have

Nt−1
∑

i=1

(Dti+1 −Dsi) + sup
sNt≤s≤tNt+1

(Ds −DsNt
)≤

Nt
∑

i=1

Yi.

To finish the proof we will show

Nt
∑

i=1

sup
ti≤s≤si

(Ds −Dti) + sup
tNt+1≤s≤t

(Ds −DtNt+1
)≤D′

t.

To do this we define

Mt =

Nt
∑

i=1

sup
ti≤s≤si

(Ds −Dti) + sup
tNt+1≤s≤t

(Ds −DtNt+1
)

for all times t ≥ 0. Suppose Ms ≤ D′
s for all s ∈ [0, t) and a mutation, re-

sampling or selection event occurs in X at time t. If t ∈ (si, ti+1) for some
i≥ 0, then Mt− =Mt because the process M does not change on these time
intervals. It is possible that D′

t changes, but D
′
t can only increase. Therefore,

D′
t ≥Mt. If t ∈ [ti, si] ∩ (mT , (m+ 1)T ] for some i≥ 0 and m≥ 0, then at

time t the processes X and X ′ are coupled. More precisely, X and Zm are
coupled and the coupling has the same dynamics as the coupling in Propo-
sition 7 except the time shift. The same argument used in Proposition 7
shows that D′

t ≥ Mt whether the individual changed fitness due to muta-
tion, resampling or selection. Since this inequality is preserved on any event
that may change Mt, it is true for all times t. �
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4. Bounding the rate when the width is large. We consider what hap-
pens when the width is large in this section. By large width we mean
Wt ≥W . The statements in this section are easier to make when we consider
an initial configuration of X such that W0 ≥ W . Although the conditions
of Theorem 1 state that W0 = 0, we can wait for a random time τ so that
Wτ ≥W and apply the strong Markov property.

We begin this section by showing that when the width is large enough
the selection mechanism will cause the width to decrease quickly. We give
a labeling to the individuals that will help us in this regard. Define the
following subsets of R:

I1 = (−∞,X+
0 − 3

16W0],

I2 = (X+
0 − 3

16W0,X
+
0 − 2

16W0],

I3 = (X+
0 − 2

16W0,X
+
0 − 1

16W0],

I4 = (X+
0 − 1

16W0,∞).

We will label each individual in X0 with two labels. For the first labeling,
we use a to label the individuals in I1 ∪ I2, we use b to label the individuals
in I3 and we use c to label the individuals in I4. For the second labeling we
use a′ to label the individuals in I1, we use b′ to label the individuals in I2
and we use c′ to label the individuals in I3 ∪ I4.

Let At, Bt and Ct denote the number of individuals labeled a, b and c

at time t, respectively. Let A′
t, B

′
t and C′

t denote the number of individuals
labeled a′, b′ and c′ at time t, respectively.

The individuals change labels over time according to the following dy-
namics:

• Mutations: If the fitness of an individual labeled a increases so that it
is in I3, then the individual is relabeled b. If the fitness of a individual
labeled a′ increases so that it is in I2, then the individual is relabeled b′.
Likewise, if the fitness of a individual labeled b increases so that it is in I4,
then it is relabeled c and if the fitness of a individual labeled b′ increases
so that it is in I3, then it is relabeled c′. Deleterious mutations do not
cause individuals to be relabeled.

• Resampling: Any resampling event in which individual i is replaced by
individual j causes individual i to inherit the labels of individual j.

• Selection: If an individual labeled a is replaced due to a selection event,
it inherits the corresponding label of the individual that replaced it. If
an individual labeled a′ is replaced due to a selection event, it inherits
the corresponding label of the individual that replaced it. If an individual
labeled b is replaced by an individual labeled c due to a selection event,
then the individual that was labeled b is relabeled c. If an individual
labeled b′ is replaced by an individual labeled c′ due to a selection event,



BOUNDING THE RATE OF ADAPTATION 19

then the individual that was labeled b′ is relabeled c′. Any other selection
events do not cause the labels of the individuals to be changed.

Let A1 be the event that there is an individual labeled b with fitness in
(−∞,X+

0 − 5
32W0) for some time t ∈ [0,T ]. Let A2 be the event that there

is an individual labeled c with fitness in (−∞,X+
0 − 3

32W0) for some time
t ∈ [0,T ]. Let A′

1 be the event that there is an individual labeled b′ with
fitness in (−∞,X+

0 − 7
32W0) for some time t ∈ [0,T ]. Let A′

2 be the event

that there is an individual labeled c′ with fitness in (−∞,X+
0 − 5

32W0) for
some time t ∈ [0,T ].

Lemma 10. Suppose W0 ≥W for all N . Then

P (A1 ∪A2 ∪A′
1 ∪A′

2)→ 0 as N →∞.

Proof. First we show the result for A1. We apply Corollary 9 with
x=X+

0 − 2W0/16, t= t0 and l =W0/32. Recall that we had defined Sx
t in

Definition 8. Because x=X+
0 − 2W0/16, we have that Sx

0 consists of all the

individuals labeled b or c. Setting t= T and l =W0/32 will make Ax,l
t the

event that an individual labeled b or c has fitness less than X+
0 − 5

32W0 by
time T . Note that according to the relabeling dynamics, individual i being

labeled b or c is equivalent to i ∈ Sx. Therefore, A1 ⊂Ax,l
t and we get

P (A1)≤ P (Al
t)≤

2N(tµ)le(γ(W0+2l)+µ+1)t

⌊l− 1⌋! .

Applying Stirling’s formula we have

2N(tµ)le(γ(W0+2l)+µ+1)t

⌊l− 1⌋! ∼ 2N(tµ)le(γ(W0+2l)+µ+1)t+⌊l−1⌋

⌊l− 1⌋⌊l−1⌋
√

2π⌊l− 1⌋
= ex,

where

x= log(2N) + l log(tµ) + (γ(W0 +2l) + µ+ 1)t+ ⌊l− 1⌋
− ⌊l− 1⌋ log(⌊l− 1⌋)− log(2π⌊l− 1⌋)/2.

As N →∞ we have x∼−⌊l− 1⌋ log(⌊l− 1⌋)∼−w logN/32. Therefore,

P (A1)→ 0 as N →∞.

We can apply Corollary 9 with x =X+
0 −W0/16, t = T and l =W0/32

to get the same bound for P (A2). By choosing x, t and l in this way, the

event Ax,l
t is the event that an individual labeled c has fitness less than

X+(0) − 3
32W0 by time T . This shows that P (A2) also tends to 0 as N

tends to infinity.
Likewise, to show P (A′

1) tends to 0 as N goes to infinity we can apply
Corollary 9 with x=X+

0 − 3
16W0, t= T and l=W0/32, and to show P (A′

2)
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tends to 0 as N goes to infinity we can apply Corollary 9 with x=X+
0 −

2
16W0, t= T and l=W0/32. �

Lemma 11. Suppose W0 ≥W for all N . Let T be a stopping time whose

definition may depend on N such that C′
T ≥N/4 for all N . Let BT = inf{t≥

T :X−
t >X+

0 −W0/4}. Then

P (BT 1{T<T /2} >
1
2T )→ 0 as N →∞.

Proof. Let A′
3 be the event that C′

t ≥N/5 for all times t ∈ [T,T + 1
2T ).

The only way for an individual labeled c′ to change its label is for it to be
replaced by an individual labeled a′ or b′ via a resampling event. The rate
at which individuals marked c′ undergo resampling events with individuals
marked a′ or b′ at time t is

C′
t(N − C′

t)

N
≤ N

4
.

Let {Un}∞n=0 be a simple random walk with U0 = N/4 ≤ C′
T . Let T ≤

t1 < t2 < · · · be the times at which individuals labeled c′ are involved in
resampling events with individuals that are not labeled c′ after time T . We
couple {Un}∞n=0 with X so that if at time tn an individual is labeled c′ due to
a resampling event, then Un =Un−1+1. If at time tn an individual loses the
label c′ due to a resampling event, then Un = Un−1 − 1. To have Um <N/5
for some m satisfying 0≤m≤ n we will need max0≤m≤n|Um −U0| ≥N/20.
It follows from the reflection principle that there exists a constant C such
that E[max0≤m≤n|Um −U0|]≤C

√
n for all n≥ 0. By Markov’s inequality,

P
(

max
0≤m≤n

|Um −U0| ≥N/20
)

≤C
√
n/N

for some constant C.
Let R be the number of resampling events that occur in the time interval

[T,T + 1
2T ) that involve pairs of individuals such that one is labeled c′ and

the other is not. Using Lemma 15 in the Appendix and the fact that the
rate at which resampling events occur is bounded above by N/4, we have

P (R> k)≤
∞
∑

i=k+1

(NT )ie−NT /8

8ii!
≤ (NT )k

8kk!
.

Then

P ((A′
3)

C) ≤ P
({

max
0≤m≤R

|Um −U0| ≥N/20
}

∩ {R≤N3/2}
)

+P
({

max
0≤m≤R

|Um −U0| ≥N/20
}

∩ {R>N3/2}
)
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≤ P
({

max
0≤m≤N3/2

|Um −U0| ≥N/20
})

+P (R>N3/2)

≤ C

N1/4
+

(NT )N
3/2

8N
3/2⌈N3/2⌉!

→ 0 as N →∞.

Let A′
4 be the event that A′

t = 0 for some time t ∈ [T,T + 1
2T ). Notice

that if A′
t = 0, then A′

s = 0 for s ≥ t. Therefore, A′
4 is the event that the

label a′ is eliminated by time T + 1
2T . By the given dynamics, A′

t can only
increase when individuals marked a′ replace individuals marked b′ or c′ via
resampling events. At time t the rate at which this happens is

1

2
· A

′
t(N −A′

t)

N
≤A

′
t.(4)

We define the event E as

E = (A′
1)

C ∩ (A′
2)

C ∩A′
3 ∩ {T < 1

2T }.
Selection will cause A′ to decrease. On the event (A′

2)
C all of the individuals

marked c′ will have fitness at least 1
32W0 greater than any individual marked

a until time t0. Thus, on the event (A′
2)

C ∩ {T < 1
2t0}, all of the individuals

marked c′ will have fitness at least 1
32W0 greater than any individual marked

a for all times t ∈ [T,T + 1
2T ). On the event A′

3 there are at least N/5

individuals marked c for all times t ∈ [T,T + 1
2T ). Hence, on the event E

individuals marked a′ will become individuals marked c′ by a rate of at least

γA′
tC

′
tW0

32N
≥ γ

160
W0A

′
t(5)

for all times t ∈ [T,T + 1
2T ).

Let {U ′
n} be a biased random walk which goes up with probability

p′ =
160

160 + γW0

and down with probability 1− p′. Let N be large enough so that p′ < 1/2.
Because the random walk is biased downward, the probability that the ran-
dom walk visits a state j < U ′

0 is 1. Once the random walk is in state j, it
goes up 1 with probability p′ and will eventually return to j with probabil-
ity 1. The random walk will go down 1 with probability 1− p′ and, from
basic martingale arguments, the probability that it never returns to j again
is (1− 2p′)/(1− p′). Therefore, once U ′ is in state j, the probability it never
returns to state j is

(1− 2p′)

1− p′
· (1− p′) = 1− 2p′.

Hence, the number of times U ′ visits a state j < U ′
0 has the geometric dis-

tribution with mean 1/(1− 2p′). For more details see [3], pages 194–196.
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By equations (4) and (5) we see that on the event E , if A′ changes during
the time interval [T,T + 1

2T ), it decreases with probability higher than p′.
The expected number of times that A′ will visit state j is therefore less than
or equal to 1/(1− 2p′) for any j ∈ {1,2, . . . ,N − 1}. Also, the rate at which
A′
t changes state is at least

γ

160
W0A

′
t

for all times t ∈ [T,T + 1
2T ) by equation (5). Let A = {t ≥ T :A′

t > 0} and
let λ be Lebesgue measure. Then

E[λ(A)1E ]≤
160

(1− 2p′)γW0

N
∑

j=1

1

j
∼ 160 logN

γW0

as N →∞.
Observe that

P (E ∩ (A′
4)

C) = P

(

E ∩
{

λ(A)≥ 1

2
T
})

= P

(

λ(A)1E ≥ 1

2
T
)

≤ 2E[λ(A)1E ]

T by Markov’s inequality

→ 0 as N →∞.

Therefore,

P (E ∩A′
4)− P (T < 1

2T )→ 0 as N →∞.

This allows us to do the following computation:

1 = lim
N→∞

(

P

(

T <
1

2
T
)

+ P

(

T ≥ 1

2
T
))

= lim
N→∞

(

P (E ∩A′
4) +P

(

T ≥ 1

2
T
))

= lim
N→∞

(

P

(

(A′
1)

C ∩ (A′
2)

C ∩A′
3 ∩A′

4 ∩
{

T <
1

2
T
})

+P

(

T ≥ 1

2
T
))

≤ lim
N→∞

(

P

({

BT ≤ 1

2
T
}

∩
{

T <
1

2
T
})

+P

(

T ≥ 1

2
T
))

= lim
N→∞

P

(

BT 1{T<T /2} ≤
1

2
T
)

.
�

Let B = inf{t :X−
t >X+

0 −W0/4}.
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Proposition 12. Suppose W0 ≥W for all N . As N tends to infinity,

P (B > T )→ 0.

Proof. First note that if B0 + C0 ≥N/4 then, because all of the indi-
viduals labeled b or c at time 0 are also labeled c′, we have that C′

0 ≥N/4.
The result then follows by Lemma 11 with T = 0. On the other hand, if
B0 + C0 <N/4 then A0 ≥ 3N/4.

Let T = (inf{t :At <N/4})∧ (inf{t :Ct ≥N/4}). Let A5 be the event that
At ≥ N/4 for all times t ∈ [0, 12T ). Let A6 be the event that Ct < N/4 for

all times t ∈ [0, 12T ). Define ζ to be the infimum over all times such that an

individual labeled b has fitness in (−∞,X+
0 − 5

32W0), an individual labeled

c has fitness in (−∞,X+
0 − 3

32W0) or At <N/4. Note that AC
1 ∩AC

2 ∩A5 ⊂
{ζ ≥ 1

2T }.
On the event {ζ ≥ 1

2T }, the rate of increase of Ct due to selection is at
least

γAtCtW0

32N
≥ 1

128
γCtW0(6)

for all t ∈ [0, 12T ). On the other hand, because Ct can only decrease due to
resampling, Ct will decrease no faster than

1

2
· Ct(N − Ct)

N
≤ Ct.(7)

Let {Un}∞n=0 be a biased random walk with U0 = 1 which goes up with
probability

p=
γW0

128 + γW0

and down with probability 1− p. Let N be large enough so that p > 1/2. By
similar reasoning as was used in the proof of Lemma 11, the number of times
Un visits a state j ≥ 1 has the geometric distribution with mean 1/(2p− 1).
Also, by basic martingale arguments, the probability that Un ever reaches
state 0 is

1− p

p
=

128

γW0
.

Note that C0 ≥ U0 since the individual with the highest fitness is initially
labeled c. On the event {ζ ≥ 1

2T }, we see from equations (6) and (7) that

if C changes during time [0, 12T ), then it increases with a probability of at
least p. Therefore, the expected number of times that C visits state j is less
than or equal to 1/(2p − 1) and the probability the Ct reaches state 0 for
some time t ∈ [0, 12T ) is less than 128/(γW0). Let A7 be the event that Ct

reaches state 0 for some time t ∈ [0, 12T ).
By equation (6), the rate at which C changes is at least

1
128γCtW0
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for all times t ∈ [0, 12T ) on the event {ζ > 1
2T }. Let C = {t ∈ [0, 12T ) :C <

1
4N} and let λ be Lebesgue measure. Then

E[λ(C)1{ζ≥T /2}] = E[λ(C)1{ζ≥T /2}1A7 ] +E[λ(C)1{ζ≥T /2}1AC
7
]

≤ 1

2
T P (A7) +

128

(2p− 1)γW0

⌊N/4⌋
∑

j=1

1

j

∼ 128 log(N/4)

γW0
.

By Markov’s inequality

P (AC
1 ∩AC

2 ∩A5 ∩A6) ≤ P

(

AC
1 ∩AC

2 ∩A5 ∩
{

λ(C)≥ 1

2
T
})

≤ P

({

ζ ≥ 1

2
T
}

∩
{

λ(C)≥ 1

2
T
})

= P

(

λ(C)1{ζ≥T /2} ≥
1

2
T
)

≤
2E[λ(C)1{ζ≥T /2}]

T

≤ 256w1/4 log(N/4)

T γW0
for N large enough

→ 0 as N →∞.

Because P (AC
1 ∩AC

2 )→ 1 we have P (AC
5 ∪AC

6 )→ 1 as N →∞.
Note that AC

5 ∪AC
6 ⊂ {T < 1

2T }. Therefore, P (T < 1
2T )→ 1 as N →∞.

Let E2 = (A′
1)

C ∩ (A′
2)

C ∩ {T < 1
2T }. Then P (E2)→ 1 as N →∞. To show

P (B ≤ T )→ 1 we can show P ({B ≤ T } ∩E2)→ 1. At time T , at least 1
4N

individuals will be labeled either b or c. According to the labeling, all of
these individuals are labeled c′ so that at time T we have CT ≥ 1

4N . By
Lemma 11 we have

P (BT 1{T<T /2} ≤ 1
2T )→ 1 as N →∞.

Note that

{BT 1{T<T /2} ≤ 1
2T }= {BT ≤ 1

2T } ∪ {T ≥ 1
2T }.

Because E2 ⊂ {T < 1
2T } we have

{BT 1{T<T /2} ≤ 1
2T } ∩E2 = {BT ≤ 1

2T } ∩E2.

It then follows that

P ({BT ≤ 1
2T } ∩E2)→ 1 as N →∞.
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However,

{BT ≤ 1
2T } ∩E2 ⊂ {BT ≤ 1

2T } ∩ {T < 1
2T } ⊂ {B ≤ T },

which gives the conclusion. �

Let V 1
t = {i :Xi

t >X+
0 +W0/4} and V 2

t = {i :Xi
t <X−

0 −W0/4}. Let F =
inf{t :V 1

t ∪ V 2
t 6=∅}. We now want to bound the time it takes for the width

to increase.

Proposition 13. Suppose W0 ≥W for all N . Then

lim
N→∞

P (F > T ) = 1.

Proof. By Proposition 7 with l=W0/4 and t= T we have

P (inf{s :V 1
s 6=∅}< t) = P

(

sup
0≤s≤t

Ds ≥ l
)

≤ 2N(tµ)le(γ(W0+2l)+µ+1)t

(l− 1)!

→ 0 as N →∞.

By Proposition 6 with l=W0/4 and t= T we have

P (inf{s :V 2
s 6=∅}< t) = P

(

sup
0≤s≤t

(X−
0 −X−

s )≥ l
)

≤ N(tµ)let

l!

→ 0 as N →∞. �

Recall that Yi = supsi≤s≤ti+1
Ds − Dsi and that {Ft}t≥0 is the natural

filtration associated with X . Note that if W0 < 2W , then for all n ≥ 1 the
width satisfies Wsn = ⌈2W⌉.

Proof of Proposition 4. We consider a sequence of initial configura-
tions X0 depending on N such that W0 = ⌈2W⌉ for all N . Because W0 ≥ 2W
we have s1 = 0 and Y1 = sup0≤s≤t2 Ds −D0. We will show that for N large
enough, E[Y1]< 5W . The result then follows because X is a strong Markov
process.

We make the following definitions:

V 1
t (s) = {i :Xi

t >X+
s +Ws/4} for t≥ s≥ 0,

V 2
t (s) = {i :Xi

t <X−
s −Ws/4} for t≥ s≥ 0,
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F0 =B0 = r0 = 0,

Fn = inf{t≥ rn−1 :V
1
t (rn−1)∪ V 2

t (rn−1) 6=∅} for n≥ 1,

Bn = inf{t≥ rn−1 :X
−
t >X+

rn−1
−Wrn−1/4} for n≥ 1,

rn = Fn ∧Bn for n≥ 1,

n∗ = inf{n≥ 1 :Wrn <W}.
Note that r1 is the first time that the event F ∪ B occurs and that, con-
ceptually, rn acts like the first time that F ∪B occurs when the process is
started at time rn−1 for n ≥ 2. The random variables Fn and Bn play the
roles of the events F and B when the processes are started at time rn−1.

On the event n− 1< n∗, by Proposition 12 and the strong Markov prop-
erty of X , we have P (Bn ≤ rn−1+T |Frn−1)→ 1 uniformly on a set of proba-
bility 1 as N →∞. Likewise, on the event n− 1< n∗, by Proposition 13 and
the strong Markov property, we have P (Fn > rn−1+T |Frn−1)→ 1 uniformly
on a set of probability 1 as N →∞. Therefore, on the event n− 1<n∗, we
have P (Bn <Fn|Frn−1)→ 1 uniformly on a set of probability 1.

Because the bounds in Propositions 12 and 13 do not depend on n we can
choose a sequence p= pN such that p→ 1 as N →∞ and almost surely

p1{n−1<n∗} ≤ P (Bn <Fn|Frn−1)1{n−1<n∗}

for all n≥ 0. Let {Sn}∞n=0 be a random walk starting at 1 which goes down 1
with probability p and up 1 with probability 1− p until it reaches 0. Once S
reaches 0 it is fixed. For n < n∗ we couple S with X so that 2Sn−1W0 ≥Wrn .
The coupling is defined as follows:

• Each step of the process S corresponds to a time rn.
• On the event {Fn <Bn} we have Sn − Sn−1 = 1.
• On the event {Bn ≤ Fn} we have Sn−Sn−1 =−1 with probability p/P (Bn ≤

Fn) and we have Sn − Sn−1 = 1 with probability 1− p/P (Bn ≤ Fn).

We will show that this coupling is well defined and gives the necessary
bound. Initially, S0 = 1 and 2S0−1W0 = W0. On the event that Bn ≤ Fn,
we have Wrn < 1

2Wrn−1 and suprn−1≤t≤rn Dt − Drn−1 ≤ 1
4Wrn−1 . On the

event that Fn <Bn, we have Wrn < 2Wrn−1 and suprn−1≤t≤rn Dt −Drn−1 ≤
1
4Wrn−1 + 1. Therefore, if 2Sn−1−1W0 ≥Wrn−1 , then 2Sn−1W0 ≥Wrn by the

coupling. It follows that 2Sn−1W0 ≥ suprn−1≤t≤rn Dt −Drn−1 as well. By in-

duction, 2Sn−1W0 ≥Wrn for all n< n∗∧ inf{m :Sm = 0}. If n= inf{m :Sm =
0}, then Wrn ≤W . Therefore, n∗ ≤ inf{m :Sm = 0} and the induction holds
for all n< n∗.

We define a function d on ({0} ∪N)∞ such that if x= (x0, x1, . . .) then

d(x) =
∞
∑

i=0

1{xi>0}2
xi−1W0.
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Consider S = (S0, S1, . . .) as a random element in ({0} ∪N)∞. Then

d((S0, S1, . . . , Sn,0,0, . . .))≥
n
∑

i=1

(

sup
ri−1≤t≤ri

Dt −Dri−1

)

≥ sup
0≤t≤rn

Dt

for all n such that n − 1 < n∗. By definition, n∗ is the first n such that
Wrn <W . Hence, d(S)≥ Y1.

For any n≥ 0 we have

P (S2n+1 = 0) =

(

2n+1
n

)

(1− p)npn+1 ≤ 4n(1− p)npn+1.

If S2n+1 = 0 then

d(S)≤
(

2 + 2

n
∑

i=1

2i−1

)

W0 = 2n+1W0,

which is obtained by taking n steps up followed by n+1 steps down.
Therefore,

E[Y1]≤E[d(S)]≤
∞
∑

n=0

[4(1− p)]npn+12n+1W0 =
2pW0

1− 8(1− p)p
∼ 4W,

because W0 = ⌈2W⌉ and p → 1 as N → ∞. This shows that for N large
enough we have E[Y1]< 5W , which gives the conclusion. �

Let l= ⌊W/2⌋. We make the following definitions for the rest of the sec-
tion:

K1 =
2N(T µ)le(γ(W0+2l)+µ+1)T

(l− 1)!
,

K2 =
N(T µ)leT

l!
,

p= 1−K1 −K2.

Lemma 14. Suppose W0 ≤W for all N . Then

P
(

sup
0≤s≤T

Ws ≤ 2W
)

≥ 1−K1 −K2.

Proof. By Proposition 7 we have

P
(

sup
0≤s≤T

Ds ≥ l
)

≤K1.

By Proposition 6 we have

P
(

sup
0≤s≤T

(X−
0 −X−

s )≥ l
)

≤K2.

On the event that sup0≤s≤tDs ≤W/2 and sup0≤s≤tX
−
0 −X−

s ≤W/2, we
have sup0≤s≤tWt ≤ 2W . This gives the result. �



28 M. KELLY

Proof of Proposition 5. Notice that

{Ns ≥ i}= {si ≤ s} ⊂
{

i
∑

j=1

(sj − tj)≤ s

}

.

Therefore,

P (Ns ≥ i)≤ P

(

i
∑

j=1

(sj − tj)≤ s

)

.

Applying Lemma 14 and the strong Markov property of X we have

1−K1 −K2 ≤ P (sj − tj ≥ T |Ftj )

for all j. Taking expectations of both sides yields

1−K1 −K2 ≤ P (sj − tj ≥ T )

for all j, so

1−K1 −K2 ≤ inf
j
P (sj − tj ≥ T ).

Note that p→ 1 as N →∞. Define an i.i.d. sequence {Vi}∞i=1 of random
variables with distribution P (Vi = 0) = 1− p and P (Vi = T ) = p. Then

P

(

i
∑

j=1

(sj − tj)≤ s

)

≤ P

(

i
∑

j=1

Vi ≤ s

)

.

This will allow us to define a new process N ′
s such that N ′

s = i if

i
∑

j=1

Vi ≤ s <

i+1
∑

j=1

Vi.

Note that P (N ′
s = 0) = p for s ∈ [0,T ) and that P (N ′

s ≥ k)≥ P (Ns ≥ k) for
all k. Therefore, it is enough to bound E[N ′

s]/s.
Let V0 = 0. Jumps of the process N ′

s only occur at points kT where k
is a positive integer. On the time interval [0,T ) the process N ′

s is constant
and has value max{i ≥ 0 :Vi = 0}. Therefore, N ′

s has the shifted geometric
distribution for s ∈ [0,T ) with mean (1− p)/p. We can now make use of the
fact that N ′

s is a Markov process. If we consider values at kT for k ≥ 0, we
have for s ∈ [(k− 1)T , kT ) that E[N ′

s] = k(1− p)/p. For k ≥ 2 we then have

1

s
E[N ′

s] =
k(1− p)

sp
≤ k(1− p)

(k − 1)pT .

This gives us

T
s
E[N ′

s]≤
k(1− p)

(k− 1)p
→ 0 as N →∞.
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On the time interval [0,T ) we have

T
s
E[N ′

s]≤
(1− p)

p
→ 0 as N →∞.

�

NOTATION

N The size of the population
µ The rate at which individuals accumulate mutations
q The probability that a mutation is beneficial
γ The selection coefficient
Xi The stochastic process in Z that represents the fitness of the ith

individual
X The stochastic process in Z

N that represents the fitnesses of the
individuals

X = 1
N

∑N
i=1X

i

X+
t =max{Xi

t : 1≤ i≤N}
X−

t =min{Xi
t : 1≤ i≤N}

Wt =X+
t −X−

t

Dt =X+
t −X+

0

w is any positive, increasing function satisfying limN→∞w(N) =∞
and limN→∞w(N)/ log logN = 0

W = ⌊w logN/ log logN⌋
T =w−1/2 log logN

t1 = 0

sn = inf{t≥ tn :Wt ≥ 2W} for n≥ 1

tn = inf{t≥ sn−1 :Wt <W} for n≥ 2

Yi = supsi≤t≤ti+1
Dt −Dsi for i≥ 1

Nt =max{i : si ≤ t} for t≥ 0

Zk,↑
t A multi-type Yule process in which there are initially N particles

of type k. Particles increase from type i to type i+ 1 at rate µ
and particles of type i branch at rate γi+1

Mk,↑
t The maximum type of any particle in Zk,↑

t

Mk,↑
t Mk,↑

t − k

X ′
t X+

0 +M0
t if t ∈ [0,T ] and X ′

iT +Mi
t−iT if t ∈ (iT , (i+ 1)T ] for

any

{Zn
t }∞n=0 An i.i.d. sequence of stochastic processes each having the same

distribution as ZW ,↑

Mn
t The maximum type of any particle in ZW ,↑
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Mn
t =Mn

t −W
integer i≥ 1

D′
t X ′

t −X+
0

F = {Ft}t≥0 is the natural filtration associated with X under the
initial condition Xi

0 = 0 for 1≤ i≤N

ZC
t A multi-type Yule process in which there are initially N particles

of type 0. Particles increase from type i to type i+ 1 at rate µ
and branch at rate C

MC
t The maximum type of any particle in ZC

t

St = sup0≤s≤t(X
−
0 −X−

s )

Ax,l
t The event that an individual in Sx

s has fitness in (−∞, x− l] for
some time s ∈ [0, t]

A1 The event that there is an individual labeled b with fitness in
(−∞,X+

0 − 5
32W0) for some time t ∈ [0,T ]

A2 The event that there is an individual labeled c with fitness in
(−∞,X+

0 − 3
32W0) for some time t ∈ [0,T ]

A′
1 The event that there is an individual labeled b′ with fitness in

(−∞,X+
0 − 7

32W0) for some time t ∈ [0,T ]

A′
2 The event that there is an individual labeled c′ with fitness in

(−∞,X+
0 − 5

32W0) for some time t ∈ [0,T ]

B = inf{t :X−
t >X+

0 −W0/4}
V 1
t = {i :Xi

t >X+
0 +W0/4}

V 2
t = {i :Xi

t <X−
0 −W0/4}

F = inf{t :V 1
t ∪ V 2

t 6=∅}

APPENDIX

Lemma 15. Let x≥ 0. The tail of the exponential series satisfies

∞
∑

i=k

xi

i!
≤ xkex

k!
.

Proof. By Taylor’s remainder theorem we know that there exists a
ξ ∈ [0, x] such that

ex =
k−1
∑

i=1

xi

i!
+

xkeξ

k!
.

Using the series expansion of ex we have
∞
∑

i=k

xi

i!
=

xkeξ

k!
≤ xkex

k!
. �
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Recall that MC
t is the maximum type of any particle in the branching

process ZC
t .

Lemma 16. For any population size N , time t≥ 0 and natural number l,

P (MC
t ≥ l)≤ N(tµ)leCt

l!
.

Proof. Consider a Yule process Z which is the same as ZC except there
is only one particle at time 0. It is well known that the number of particles
in Zt has mean eCt. Let M ′

t be the maximum type of any particle at time t.
When there are k particles in the population, we let B1, . . . ,Bk denote the
types of the particles, where the numbering is independent of the mutations.
For any l≥ 0,

P (M ′
t ≥ l) =

∞
∑

k=1

P (M ′
t ≥ l|Zt = k)P (Zt = k)

=

∞
∑

k=1

P ({B1 ≥ l} ∪ · · · ∪ {Bk ≥ l}|Zt = k)P (Zt = k)

≤
∞
∑

k=1

kP (B1 ≥ l)P (Zt = k)

= E[Zt]P (B1 ≥ l)

= eCt
∞
∑

i=l

(tµ)i

i!
e−µt.

By Lemma 15 it follows that

P (M ′
t ≥ l)≤ (tµ)leCt

l!
.

Now consider ZC . At time 0 label the particles 1,2, . . . ,N and let M ′
i,t be

the maximum type of any particle among the progeny of particle i at time t.
Then

P (MC
t ≥ l) = P ({M ′

1,t ≥ l} ∪ · · · ∪ {M ′
N,t ≥ l})

≤NP (M ′
1,t ≥ l)

≤ N(tµ)leCt

l!
. �

Recall that Mk,↑
t = Mk,↑

t − k where Mk,↑
t is the maximum type of any

individual in the branching process Zk,↑
t .
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Lemma 17. For any time t≥ 0 and any integers k ≥ 0 and l≥ 0 we have

P (Mk,↑
t > l)≤ N(tµ)le(γ(k+l)+1)t

l!
.

Proof. While all of the particles in Zk,↑
t have type less than k+ l, they

branch at a rate which is less than or equal to γ(k+ l) + 1. Because of this,

P (Mk,↑
t > l)≤ P (M

γ(k+l)+1
t > l). By Lemma 16 we have

P (M
γ(k+l)+1
t > l)≤ N(tµ)le(γ(k+l)+1)t

l!
. �
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