(Informal) Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be a function. The pullback of \(f\) is the function \(f^{-1}:\mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})\) defined by \[f^{-1}(A) = \{x \in \mathbb{R} : f(x) \in A\}\]
Example: Let \(f(x) = x^2.\) Then \(f^{-1}(\{4\}) = \{-2,2\}\) and \(f^{-1}((-\infty,0)) = \emptyset.\)
Claim: If \(X\) and \(Y\) are independent random variabes, and \(f\) and \(g\) are functions, then \(f(X)\) and \(g(Y)\) are also independent random variables.
Example: If \(X\) and \(Y\) are independent, then \(e^X\) and \(e^Y\) are independent. So are \(X\) and \(Y^2.\)