The power rule states that for any number \(a,\)
\[\frac{d}{dx}x^a = ax^{a-1}\]
▼ Proof for positive integers \(n\):
Let \(n\) be a positive integer. By definition of derivatives,
\[\frac{d}{dx}x^n = \lim_{h \rightarrow 0} \frac{(x+h)^n - x^n}{h}\]
The Binomial Theorem states that for any positive integer \(n,\)
\[(x+h)^n = \sum_{i=0}^n {n \choose i}x^i h^{n-i}\]
If we separate the terms in the series when \(i=n\) and \(i=n-1,\) we get
\begin{align}
(x+h)^n & = {n \choose n}x^n + {n \choose n-1}x^{n-1}h + \sum_{i=0}^{n-2} {n \choose i}x^i h^{n-i} \\
& = x^n + nx^{n-1}h + \sum_{i=0}^{n-2} {n \choose i}x^i h^{n-i} \\
\end{align}
Plugging in this representation for \((x+h)^n,\) we get
\begin{align}
\frac{d}{dx}x^n & = \lim_{h \rightarrow 0} \frac{x^n + nx^{n-1}h + \sum_{i=0}^{n-2} {n \choose i}x^i h^{n-i} - x^n}{h} \\
& = \lim_{h \rightarrow 0} \frac{nx^{n-1}h + \sum_{i=0}^{n-2} {n \choose i}x^i h^{n-i}}{h} \\
& = \lim_{h \rightarrow 0} \left[nx^{n-1} + \sum_{i=0}^{n-2} {n \choose i}x^i h^{n-i-1}\right] \\
& = nx^{n-1}
\end{align}
Binomial Theorem