Math Home
Linear Algebra

Definition of a Matrix

A matrix is a list of numbers arranged into rows and columns. They are usually represented with capital letters and they are drawn as arrays of numbers in square brackets. For example, \[ A = \begin{bmatrix} 1 & 3 & -7 \\ 2 & 0 & 0 \\ 3 & -1 & 1 \end{bmatrix} \]

The rows go across and the columns go down. The second row of \(A\) is the vector \(<2, 0, 0>\) and the third column of \(A\) is \[ \begin{bmatrix} -7 \\ 0 \\ 1\end{bmatrix} \]

Specific entries are denoted with subscripts. The element in the first row and second column is \[A_{1,2} = 3\] Keep in mind that the row always comes first and the column second.

The dimensions of a matrix are given as rows \(\times\) columns. So the dimensions of \(A\) are \(2 \times 2.\)

Matrix Addition

If \(A\) and \(B\) are two matrices of the same dimension, then they can be added coordinate-wise.

Example 1: \[ \begin{bmatrix} 2 & 1 & 3 \\ 0 & 4 & 2 \end{bmatrix} + \begin{bmatrix} 7 & -2 & 0 \\ 1 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2+7 & 1+(-2) & 3+0 \\ 0+1 & 4+1 & 2+5 \end{bmatrix} = \begin{bmatrix} 9 & -1 & 3 \\ 1 & 5 & 7 \end{bmatrix} \] Example 2: \[ \begin{bmatrix} 0 & 5 & 0 \\ -3 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 8 \\ 0 & -3 \end{bmatrix} \] This sum does not exist the because the first matrix has dimensions \(2 \times 3\) but the second matrix has dimensions \(2 \times 2.\)

Calculator

Enter 2 matrices to see their sum.

Properties of the Matrix Addition

Practice

Compute the sum:


Old scores:

Scalar Multiplication

Scalar multiplication works in a similar way for matrices as it does for vectors. When multiplying a matrix by a number, every entry gets multiplied by the number.

Example: Let \[ A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ -2 & 4 \end{bmatrix} \] Then \[ 3A = 3 \begin{bmatrix} 2 & 3 \\ 0 & 1 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 3*2 & 3*3 \\ 3*0 & 3*1 \\ 3*-2 & 3*4 \end{bmatrix} = \begin{bmatrix} 6 & 9 \\ 0 & 3 \\ -6 & 12 \end{bmatrix} \]

Matrix Subtraction

Subtracting matrices is a combination of scalar multiplication and matrix addition. If \(A\) and \(B\) are matrices of the same dimensions, \(A - B = A + (-1)B.\)

Example: \[ \begin{bmatrix} 2 & 3 \\ -1 & 0 \\ \end{bmatrix} - \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ -1 & 0 \\ \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ -1 & -3 \end{bmatrix} \]