Claim: If \(c\) is a contant and \(f\) is a differentiable function at \(a,\) then \[(cf)'(a) = cf'(a)\]
Example: The derivative of \(x^2\) is \(2x.\) So, the derivative of \(5x^2\) is \(5\) times the derivative of \(x^2,\) or \begin{align} (5x^2)' & = 5(x^2)' \\ & = 5(2x) \\ & = 10x \end{align}
Claim: If \(f\) and \(g\) are differentiable functions at \(a,\) then \[(f+g)'(a) = f'(a)+g'(a)\]
Example: The derivative of \(x^2\) is \(2x\) and the derivative of \(x^3\) is \(3x^2.\) So, \begin{align} (x^2+x^3)' & = (x^2)' + (x^3)' \\ & = 2x + 3x^2 \end{align}
Corollary: If \(f\) and \(g\) are differentiable functions at \(a\) and \(c\) and \(d\) are constants, then \[(cf(a)+dg(a))' = cf'(a)+dg'(a)\]
Example: By the corollary, \begin{align} (7x^2+5x^3)' & = (7x^2)' + (5x^3)' \\ & = 7(x^2)' + 5(x^3)' \\ & = 7(2x) + 5(3x^2) \\ & = 14x + 15x^2 \end{align}